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A DIFFERENTIAL METHOD FOR SOLVING THE BOUNDARY LAYER
EQUATION FOR STEADY LAMINAR INCOMPRESSIBLE FLOW (1)

by
W. Schonauer

ABSTRACT: An implicit differential method is given
for the laminar incompressible steady boundary layer at a
solid impermeable wall. It can be shown that perturb-
ations are definitely reduced after a few steps of
calculation. The method is tested practically with a
large number of examples. An electronic computer
is required, but the method is well suited for programming.
Two~digit prec131on can be attained for the shear stress|
at_low costy" :

1.  INTRODUGTION %
a. The Prandtl boundary layer equations.

For steady, laminar, incompressible flows, the Prandtl [1]
boundary layer equations, which are a first approximation to
the Navier- Stokes equations for high Reynolds numbers, [2] are:

uu‘-—;—-vuy--U-U";?U’_-_,-=Uer (13')

u, vy =0,] (1b)

where U(x) is the given outside ﬁelocity and v is the kinematic
viscosity. The velocity components within the boundary layer,
u(x, v} and v(x, y), are desired. In general, only the "velocity
profile™ u(x, y) or the derived quantities, wall friction stress,

displacement loss thickness, and momentum thickness, are of interest.

x
Numbers in the margin indicate pagination in the foreign text.

(I)Extracted from the Karlsruhe Technical College Dissertation,
1963, or from Report D7 of the Institute for Applied Mathematics,
Karlsruhe Technical College.
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Equations (la) and (1b) can be solved under the following
boundary conditions: ‘

1. Transition to the outside flow:

Y=o ux00) = Ulx)| (2a)
and as much as possible uy(x, o ) = uyy(x, ) = ... =0;
2. Adhesion condition at the solid impermeable wall:

y=0: (%0 =z 0)=0.] (2b)
3. Furthermore, let an initial profile ‘be given:

x=0: u(y) =uy).| | (2¢)

b. Solution methods.

For a numerical solution of (1) and (2), principally the
following methods are used: |

1. Series method. U(x) must be statéd as a power series, in x.
. The velocity profile u{x, y) is likewise developed as a power

" series in x with coefficients independent of y, and
universally calculable on appropriate division. The accuracy
of the method depends on the convergence of the series. For
large values of x, particularly near a separation point,

so many series terms must be considered that the application of
the method is no longer practical.

2. Momentum and energy conservation methods. With a prescribed
trial function for the boundary layer profile, the boundary

layer equation is fulfilled on the average acrdss-the boundary
layer thickness with the laws of conservation of momentum

(and energy). In this way we get an approximation to the boundary



layer equation. But we have little chance of estimating the
error which may have occurred. The computing cost is relatively
low.

3. Differential methods. The solution u(x, y) is calculated
at the lattice points of a difference network. The accuracy
depends on the mesh width of the network. The computing cost
is very high for high accuracy. Determination of the numerical
stability is a prerequisite for the reliability of the method.

4, Method of differences and differential equations. Differences
are introduced in the =x-direction, while;differen?ial equations,
which are to be solved as bounFary value problems, are retained
in the y-direction. Iterations are required for this, and
these require even higher computing cost than in the differential
method.
c. Similar solutioms 3

The so-called "similar solutions" make up a class of exact
solutions of (1) and (2), which we will need later. With a

boundary layer thickness 4(x) and a profile parameter i(x),
we can set up an initial boundary layer profile

(e, y) = UG S )

with Ww=y4 . It appears that for
. 2T UGy iy
s 0
= T = Al (3)
with X; as an integration variable and
sy U]
}»= P =f1'r;—" (4)




with /| = constant, that the system (1), (2) leads to a
common boundary value problem, the so-called Falkner-Skan
equation [3], the solutions of which are thé] well-known
Hartree profile [4] (Figure 1).

The requirement that 4 = constant, with (4), establishes
the outside velocity:

A
U(x) = cx*, (5)

which can be explained as the potential velocity at a

wedge upon which the flow is symmetric, with the apex angle
ix (Figure 2). For 4} = 1 we have stagnation point flow,
and for il = 0, plane plate flow.

2, THE STARTING EQUATION FOR THE DIFFERENTIAL METHOD
a. The Crocco transformation.

The Prandtl equations (1) are poorly suited for a
differential method, as the integration range in the y-direction
is infinite. Thus, Crocco [5] transformed the (x, y) region

into an (x, u) region having the range limits u = U(x). Crocco
took as the dependent variable the shearing stress

t(x,u)=g-;'uyi'l (6)

with o as the density of the flow medium.

In the incompressible case, ¢¥ is constant. Thus, we
take the dependent variable

I(x,u);-:ﬂi%u—}-=uy. (7)
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Hartree profile. The flow around Calculation of the
a cone. velocity profile

according to Prandtl
and Crocco.

Instead of the wu-profile in (1) we use the t-profile.
In order to obtain the velocity profile from this, we
calculate the value y for u as the fixed position x
(Figure 3). We have dy = du/uy, and with (7)

[T

" du, |
y= | ieey (8)
7]

where uy is the integration variable and x is fixed.
For the back-flow profile (t = u <|0), the Crocco transformation
“is no longer reasonable (Figure 3).

If we transform the system (1), (2) to the t-variable
with (7), then a non-linear boundary condition appears at
the wall. But if we introduce the new dependent variable

;mu)=§; - (9)

all the boundary conditions become linear, an advantage for
the differential method. It appears later that the z-profiles
are better handled numerically than the t-profiles, and that
the z-profiles avoid the singularity which occurs with the




t-profiles near the separation point.

The system (1), (2) is transformed to the z-variable with

(7) and (9). With respect to the derivation of the z-equation,
see Schonauer 2 , Section 4. From (1) we obtain

uz, - UU":H.—‘J'(?::““.—.-::}zo,_I (lo)

and the conditions (2) become
1. Transition to outside flow

w=U) 2 sx, U)s=0; | (11a)

2. Wall

u=~=0 o5 {v,0) = —»-{{;g 5 (llb)
3. Initial profile

=0 i (0, u) =3, | - (11¢)

b. Similarity transformation,

As was described in Section lc, the Prandtl equations (1)
can be transformed by a similarity transformation into a form
from . which similar solutionsjican be obtained at once. Now
we shall likewise make a similarity rule for the z-variable,
in which ¢(x) and A(x) are defined by equations (3) and
(4). Because 4| often appears in the combination U ¢pl = A(x),
this quantity is defined in (3).

In order to obtain dimensionless quantities, we introduce
in place of. u:

t=+ (12)

(2) See footnote (1), page 1.
¢ o

i



and obtain, instead of the variable range limit u = U(x)@thet
fixed limit %/ = 1 (rectangular range).

We make the variable x dimensionless by a fixed reference
length L. Then the argument x/L is to be inserted in all
functions of x. Likewise, the integration variable xl/L is
to be taken in (3), and we have

A(x) = L A, (x/L). | (13)

A(x) has the dimension of length and AL(x/L) is dimensionless.
For JJ-We have

Ha/l) = AUGLYU L] with  U(yL) = aUjd/L) |

The dependent variable 2z has the dimension of uﬁ, SO
for z we make the statement " '

(v, v) = T H( =LY, (14)

As U and ¢ are unknown functions, solution of the boundary
layer equation is reduced to calculation of the dimensionless
quantity H.

with (3), (4), (13), and (14) we get an equation for the
H-profile from (10). For its derivation, see Schonauer,
Section 5 3). With the designation H' = oH|#] we get
S RHH —H =0 =) H — (@2 -9 H —¢ w=0.| (15)
L

This equation is the starting point for the differential method.

Equation (15) was given by Nickel [6]. Gadd [7] used
a similar equation for the laminar compressible boundary layer.

(3) See Footnote (1), page 1.



Conditions (11) yield

Y -
f=1: Hlzx =0, (1l6a) i s
f=0 : H(©, x)=-—-;l’.,‘ (16b) H-ﬁ//// |
t ’ i /

x=0 : HE0) =Hg \ (16¢) " yr—) ‘ H,,‘a/’f —=
The so-called second wall Figure 4. Integration range
o N T gt I vy and boundary conditions
adhesion follows|from (15) for Equation (15).
and (16b):

[=0 : H'0x)=0) (16d)

Figure 4 shows the integration range with the boundary
conditions.

In the following deliberations we shall, for simplicity,
set L =1 and only consider the reference length L again
in Section 8,

' 3
3. THE SIMILAR SOLUTIONS OF,THE H-EQUATION
- \

If we set the large term ih“pafentheséS'in‘(QS) equal
to zero, and J is constant:

QHH —H2= 2 (0 — () H ~ (#)— ) H=0,] (17)

then all the coefficients of this equation and the boundary
conditions (16a) and (l6b), which satisfy a solufidh“?f (17),
are constant. Then a profile H = H(!) can be found as

a solution of this ordinary boundary value problem, which
satisfies (17) independently of X, and so also satisfies (15).
Figure 5 shows some similar H profiles. They are the T
_ . . . . - : S e,

.;.



H-transformed Hartree profiles (4), whicﬁﬁinclude an outside

¥ 1

velocity according to (5).

Rauer [8) has calculated similar H-profiles with high
accuracy and was able to show that the asymptotic development

f—r1: HE—( =3 e+ bl —0)] | (18)

applies, where a and b are constants. Then the value

H'' = Q0 for ¢ = 1. That is, the profiles open at the point
ft= 1 with horizontal tangents. But at the same time,

H" = & . The t-profiles corresponding to the H-profiles

would open at ¢} = 1 with vertical tangents (Figure 5).

This singularity is more undesirable for numerical calculation
than the singularity H" = oo of the tz-profile. In Section 7
it] is shown how the similar H-profiles can be computed
interatively by the differential method.

o —— 2t

P (k=1

-Profile] : — ket

Figure 5. Similar H-profiles Figure 6. Symbols for the
differential method

P

- (4) See Reference &4



4, THE DIFFERENTIAL METHOD
a, Preliminary comments

Explicit differential methods (5) for the incompressible
Prandtl equations were developed by Schroder [9], Gortler [10],
witting [11] and Rheinboldt [12]; for the compressible Prandtl
equations by Siekmann [13]; and for the compressible Crocco
equation by Fliugge-Lot [14]. From the author's experience,
these expliciit methods are stable only at sufficiently great
distance from the stagnation point and sufficiently small
step width in the x-direction. Stability investigations have
not been performed.

In order to obtain more favorable stability properties,
Kramer and Lieberstein [15] developed an implicit differential
method for the compressible Cr?cco equation, without demon-
strating the stability, however.

While the present work was being done, implicit differential
methods with stability studies were developed by Fiebig [16] for
the Prandtl equations and by Krawczyk [17] for the von Mises
equation.

b. Symbols for the differential method

The integration range shown in Figure 4 is covered with
a rectangular lattice having the mesh width}h in the x-direction
and 1 in the {-direction (Figure 6). 1In the ¢Z|direction
we will usually calculate with the more distinct strip number n.
As the range is limited by ¢ = 1, 1 = Vn. -

\

We assume that we know the solution H at a point x

~which s also called, briefly, i, in the following.

is

(5) A differential method is called explicit if the solution can
be calculated exp11c1tly at the lattice points, in contrast
to implicit methods in which ithe solution is obtained by
solution of a system of equat'ions.

N

mo | \

i
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We will calculate the solution for position Xj41 ac@g;dfhg_to
the parabolic character of Equation (15).

As the differential method works with lattice point values,
we replace the derivatives in the ¢/ -direction by the central
difference quotients -

R ’ 12 LS ’
Hi = %{I‘lr;"k-i—l_“jfi.k——l) {"”‘gH } ’ ‘ - (lga)
: - ;2 3
Hi'w= n®{Hi s — 2 Hox + Hisot) {— 13 HW} . ‘ (lgb)

The first neglected term of the Taylor series is always shown
in () .

We introduce the symbols

=4 [3x) — 2}¢, (20a)

E;=(1 -3, | (20b)
Alx;

Bf=57§).1 (20¢)

The ordinate on a line k of the mesh network, Figure 6, is

- - k
émékzkl:}—; ~I

For the large term in parénthe5e33in (15) we use the designation
i =2 Hi Hi — H.".i — EH, - Ha Hi. ‘
¢. An implicit differential method.

We replace H, in (15) by the difference quotient

H..: = -%‘ (I:I"'i'lvk — .H;‘k) {—‘;—1{‘,} (21)

e


file:///-jHJ

and take all H values in the brackets [] of (15) at the point
i + 1. Then, with the symbols from Section 4b, we obtain

ﬁ+ka_B&mmM$;}gg=01 (22)

Equation (22) contains three unknown H-values at the point i + 1
through Equations (19). Such an Equation (22) can be set up

for all inner lines from k=1 to k=n-~-1, But n+ 1
unknown H values, H, to H, must be calculated. Of these,

H, =0 is given from the boundary ¢ondition (16a), so that
an equation for Hy is still lacking.

In order to obtain this equation, we represent the value
H;,1 in the Jl-direction by a Taylor expansion at the point
i + 1. With the boundary conditions (16b) and (16d)jwe obtain
the wall equation

Hioo—Higy= "; \— %H’“} \ (23)

The Equations (22) formed for k=1 to k=mn-1
yield, with (23), a system of n equations for the n unknown
Hy to H,_y- This system is nonlinear béaéﬁSEjof the first two
terms in [i + 1, k]. These terms are linearized as follows:

Hopns = i Hiy {+ 0 H} | (24a)

Hig = M, Higa 1+ R} l (2£|.b)

73]

The equation system, which is again linear, 1is ordered
with respect to the unknowns. This yields the equations:

for k = 0, Equation (23) applies;
for k=1 to k=mn-~-1, we have
kel }Iie‘l,k;l + "-‘u H e+ f;.k+1 H.'-J-I.k-;-l =7, l (25)



with the coefficients

(26a)

“okzr = — 20t Mgk o (H o+ B

(with the exception that ¢,_1. p drops out);
b

Gp =403 M-Iy + B ,l (26b)
n.= Biq1 Hs.:.—»‘ (26¢)
With the vectors
Hio \ o Hiire - {7
}‘ri,l. Hj+1‘; I n
H = s ﬁ;+1 = » =
(Finer) Higr,not .y

and the matrix C formed from the coefficients Ck, u e
e — *
can write the equation system in matrix form:

C{L) Huy = (1) . (27)

-

Matrix C 1is a tridiagonal matrix

(Figure 7).

n-1

Figure 7.
Tridiagonal matrix.

To solve such an equation system, we will set up a
special computer subprogram, in which the null elements need
not be stored. For each equation, four memory positions
are required with the right side. In order to solve by the
Gauss elimination method, we need three additiomns, three
subtractions, and two divisions for each equation.



The vector H,., appears as the solution of system (27).
In this way, the H-profile is known at point i + 1. Then
the profile for point 1 + 2 can be computed, etc. In order
to compute one value Hi+l, K’ 25 arithmetic operations are
required if we count only the operations to be done at each
point (i + 1, k) (including solution of the equation system)
and assume all other quantities to be previously calculated,

such as nf2, 0%, & (L — 23

d. The initial profile

A profile Hjy must be given as the beginning condition
(16c). Essentially, any arbitrary H{profile can be used in
this method, But it will be very suitable if the initial
profile also meets the boundary conditions (16a), (16b) and
(16d). For a flow body with the leading edge angle a« =/
(Figure 2) we will take the similar solution described in
Section 3 for s=afr) as the H-profile for point x = 0,
for which the calculation is shown in Section 7. We canm also
start the calculation with Xy # 0, and must then prescribe
the profile H| for this point.

If the profile H| dbe§ not meet the boundary conditions

-~ (18a), (18b) and (184), then the "compatibility condition"
between the initial and the boundary conditions is not met.

The solution of such a problem has a singularity at the starting
point, X5, which in the differential method is "blurred"

over a mesh width, but which does not perturb Fhe application
of the differential method,

5. THE STABILITY BEHAVIOR

The stability behavior of the differential method given
above was studied directly with respect to the behavior of a
small error, without being based on a stability definition.

' Here only the basic coﬁcept and the result of the investigétion
are reported. '
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A starting profile | at point x; would produce an

i
adjacent profile HHJ at point Xi,1 as a solution of (27).
An initial profile X;+% , where #| is an errorjvecfbfi::““?

_assumed to be small; (g <'nl produces an adjacent profile
ﬁi%r+$wd . Linearizédy then (vector arrows are now left off)
we have

gizi=Sg;,| (28)
where S is a matrix which depends on the solution CHy,, but

3 15|
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.  We shall call it the stability matrix.

is independent of ¢

If we consider an error ¢¢ introduced at an arbitrary
point x, over several computation steps, we get the error
series: qoig; = 8 G Fo=Seqi =5 sl_r;?;\. . . etc., and generlally, after
m steps,

Fn = Sunct = S Snct - S St = B | (29)

We ask ourselves: how does the length of the error vector
change here? If we investigate the first part of (29),

that is, ¢.=3S.¢~-| , this equation represents the behavior of
the error in a (general) computational step. The length of this
vector is

!;met = Q?:" P = '?"::-;—1 S:-\;Sm 9":.;-1 L] [ (30)

where ' designates transposition (exchange of rows and columms).
With the eigenvalues ;20| of the so-called Gauss-transform
St S and the components aj of the suitably transformed

m°m e
vector ¢m-13| we get

pmoaff =+ ad 4o b ad (31a)
and for comparison
Pl = s 6 o+ g a3+ 1y 03| (31b)
If all 4<1|; that is, if i<, then also {Pond << ]

and the error vector has become smaller. An increase in the
error can occur with iw.>1 . '

The matrix §' S  depends on x/h, n, and the H-profile

itself. The eigenvalues u_ . were determined numerically for

a large number of matrices S' S~ for the H-profiles of the
similar solutions. The results are shown in Figure 8. As

(6)

all values of  ima > , error amplification is possible

(6) It can be shown that the value Hrgae 3 as x/h -~ .

b
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in all cases. It appears in the calculations (7) that the value
of Hpax Was usually much larger than the next largest eigenvalue,
so that in the most favorable case we can figure on an ampli-

for the length of the error vector.

fication factor of ?E;JE
But even.then error amplifications are still possible, so that
we get no statement about the stability from study of one step
in the calculation.

Next, we consider the second part of (29), namely, = F,n)
and investigate how the length of the error vector ¢l has
changed after a total of m steps. With exactly the same
considerations as above, .this leads to study of the eigenvalues
@) = "0 of the matrix R*mRm. gThe product matrix R, also
depends on the position xo/h, for which the error 9% is
assumed. The values of w..; were computed for a number
of matriceS)R'mRm. The results for H-profiles of the similar
solutions are shown in Figure 9. Because ?f computer memory

limitations, only values up to n = 20 could be investigated.

The . curves always begin at the value W . (X4}, :
first rising and then after some steps falling quickly below

the value ow. = 1. Then all the ;<] and the error vector
has certainly become smaller. As the value' .. also

extends far beyond the next largest eigenvalue, then in the

most favorable case we have the amplification factor .

for the error length. In the general case, then, the error

has always become smaller before the value Omox < 1 has

been reached.

The explanation for the drop-off of the  w..l curve lies
in the spectrum of the pH.. To be sure, there appears at least
one value-of ;> 1 , as well as other values of <)

which reduce the amplifications of the preceding steps, as the
eigendirections of the various M. are different at every point.
Now if we study the values of .. for a general outer flow
U(x), ‘in which i) and so the H-profile change with x, then

(7) simultaneous iteration for two eigenvalues by the von Mises
method. oo B



the eigendirections of the i, change even more strongly and so

produce smaller values of &..) than for i = constant.

The ‘wm. curve was calculated for the flow around a cylinder
(see Section 10c) at =n = 20; it is plotted in Figure 9.
This curve scarcely differs from the corresponding curve for
Al =1, althoughl ﬁ"*qseparation for the cylinder and

‘the curves for 1=0 or for ﬁjseparation lie above the
curve for A = 1.

It was possible to confirm the result of the stability
study by numerical stability tests. Artificially introduced
errors at arbitrary values of x/h and n were rapidly
decreased. This was involuntarily confirmed by the fact that
a calculation started accidentally with a separation profile
gave the same separation point as one started with the
stagnation point profile, within the limits of computing
accuracy, for cylindrical flow.

6. EXPERIENCE WITH AN EXPLICIT METHOD AND A MULTIPOINT METHOD

Along with the implicit method described here, two other
methods were studied., With the implicit method described in
this work, the value H_ in (21) is calculated by Equation
(15) taken at the point (i + 1, k). In the explicit methods,
H, is formed from Equation (15) taken for the point g(i, k).
In the multipoint method it is formed from an average of
Equations (15) for i and i + 1. The last two methods were \

(8)_

described extensively by Schonauer Here we report only

the information obtained there with respect to the stability
of this method.

In the explicit method it appeared that we must have

for stability. That means, for instance, that h must be

(8) See Footnote (1),

13



equél to or less than 10”% for = 1, n=10, x = 0.1,

A larger value for h destroys the solution after a few steps.
If the required computing accuracy would allow a step width

of h= 10'2, then a hundred times the computing cost would
be needed for stability reasons., Therefore, this explicit
method is not suitable for practical application.

In_the multipoint method, as in the implicit method,

the eigenvalues My of the matrices §' S~ and the eigenvalues
w] of R‘mRm are calculated. Such high values appear that
destruction of the solution must be expected with a sufficiently
large error. It is possible to calculate with this method

as long as no large, errors are allowed. But it is mno longer
possible to.differéntiate between method errors and amplified

rounding errors, so that no reliable results are obtained.
7. CALCULATION OF THE SIMILAR H-PROFILE

For x = constant, 3. = constant, so that the H-profile
is also approximately constant, at least if it is almost
similar to the H-profile of 1 . Then the stability matrix S
is also constant. In the program which is available anyway
for calculation of the H-profile, one also suppresses the
command to enumerate the x. In this way one always takes
the solution profile for the x-interval again as the starting
profile for the same interval.

According to (29), for § = constant, g¢.=3"¢] . If
Hinax <) for the maximum eigenvalue of S, then 3$~—0 for
nr 0 so that the initial error ¢ vanishes, Thus we have
an interation method for computation of the similar solutiomns,
because when | = comnstant the error ¢ is the deviation of
the initial profile from the similar solution.

Numerical calculation of a large number of eigenvalues showed
that we always have #..<1l for the methods described here.
The fastest convergence appears at point x/h, at which #..4
has the_minimum value. This is the case for xo/h = (0 or

——

19|
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for xo/h = 1, There, one can genéxéte the similar H-profile
after 5 to 30 steps, depending on the starting profile and

the required accuracy. That is, we can use HE) =1
TABLE 1
WALL VALUE OF THE SIMILAR H-PROFILE AT Le=1,0 =0 AND

VARYING MESH NUMBER n

n OH =1 M, A= 0

o | 0,759636 0,116262
300 0,739733 | 1,1l0368
200 - 0,759805  ; 0310734
160 0,760351 : 0,3111250 -
50 0 0,760659 1 0,112304
20 0763107 | 0,115364
J100 7 0,768354 ¢ 0,119066

5 0,583003 |, 0124632

Table 1 shows the wall values H,=- /i {; = 0)jof the H-profile,
Figure 5, for il = 1 and 4 = 0 with various values of m.
(9) . The H-profile
and, with it, the wall values, depend on n, so that they give
a view of the accuracy of the method. It is strlklng that the
value of Hy still shows an absolute error of lO even for

The value for n = o} was calculated by Rauer

= 300. For an absolute error of 10 we must have na350 ,
and n= 10| 1is needed for an error of 10 2. The dependence
of the error on the value of n is investigated in the following
section. -~

8. ERROR DEPENDENCE ON THE MESH WIDTH

a. Error in the Ij-direction.

“ '\Approximation errors due to a finite strip number, n,
arisé in the  {[-direction due to the central differences (19).
We commit such an error in each Equation (15). In comparison,

(9} See reference [8]. y
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we can neglect the errors of the wall equation (23). Then,
instead of (27), we obtain the equation

CHan =141 (32)

in which £ 1is the error vector which has the components:

fo =0, for k=1 to k= n-1
fomm g (HHY — I 2L = (9 A7) (33)
If the term in braces, { }i , in (33) were a constant

independent of n, then the error vector would be proportional
to Unz. A study of the Hy values given in Table 1 for their
dependence on n shows that the errors of the Hy values are
approximately proportional to n. This means that the term

in braces,  {}} , in (33) itself varies strongly with n,
because of the fluctuation of the higher derivatives H''?®
and HY. It is sufficient that a large value of f; appear at

Hipy = Clx o

a point k. From the formal solution of (32):
we See}that this component is distributed over the entire
solution Hi+1’

I“\
i
b. Error in the x-direction.

An approximation error in the x-direction arises through
the difference quotients (21) and the linearization (24). Ve
again obtain an erronéaﬁéfgguation (32) with £5 = 0, and,
for k=1 tok= n-1 '

Sem B[ H e =R 0 (34).

The error is proportional to the step width h if the term

in brackets in (34) is constant. The bracketed expression can
take on large values if H, or H,, are large. So as to
calculate over-all with about the same approximation error,

it isfdeéira?le to compute with smaller steps where H,  or H
are largerjthan in the rest of the range. The course of - H

depends on U(x)and is easily determined by a coarse sample

calculation. fﬂ




It is convenient to choose the step width h so large
that the approximation error in the x-direction for a single
step is about one-tenth of the error which Table 1 shows for
the n wused., A higher expenditure for computing in the
x-direction does not improve the accuracyibecauselthe attainable
\
h

accuracy is limited by the value of n. Accumulation of
single errors in the x-direction is not to be expected, according
to the results from Section 5, as each error can be considered

as a small perturbation ¢) of the true profile, which is

removed after a few steps.

9. COMMENTS ON PRACTICAL CALCULATION

It is practical to set up the program for solution of (27)
so that the functions U(x), A(x) and A(x) are provided to
the main program by a'subprogrém with the argument x. Cal-
culation for various velocities U(x) 1is done by exchange
of this subprogram.

Now we shall state the relations by which the practically
interesting quantities can be calculated from the H-profile,
In order to obtain dimensionless quantities, we again use
the reference length L introduced in Section 2b, along with
a reference velocity U,| with which U(x) is made dimensionless.

For the wall shearing stress %] we obtain, wusing (3),
(7)’ (9)! (13); and (14):

tfLy UL /FH, TV |
Vet =) ’ (35)
where Hy = H(O, X/L)f"¥Analogously, we obtain the y-coordinate
with (8):
o - 4
YLD Ve L Vo s
L b ¥ f’VAL U J'yzﬂgpﬁL)' (36)

with 4| as the integration variable. The integral is calcul-
ated in the examples of Section 10 by the right angle rule
with the first derivative, with the points ¢{| of the difference

‘m . i



method as base points. The exact formulas for this can be
found in Schonauer (10). The displacement thickness 47 and

the momentum loss thickness @ are defined by

Toymo y=m

o = J'(l——gr)d)‘, . &= %(1—%)&)/.

;f=0 "-0

With du/dy = u, = t for a fixed position x, we obtain
=1
HYEL YT | e S (37)
. . . Z‘tl . P -
GUYTI_ T [t )
=3

The integral is again computed by the right angle rule.

10. EXAMPLES

a. Preliminary comments

The examples were computed with the Zuse Z23 computer system
at the Karlsruhe Technical College. A program was set up which
computed with two different step widths: h: with hy from
Xy to x; and with h; for x >x . It was printed only
at preset x-intervals, and OnIY”thre were T 075 G and,
if selected, also y, computed. The strip number n has a
double effect on the accuracy of .6%0] : both the accuracy
of the H-profile as well as the evaluation of the integrals
by the right angle rule depend on the value of n through
the n specified base points. The quantitiies 6" 6] are
thus. quite inaccurate for small n,

e

(10) See Footnote (1), page 1.
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b. Outside velocity, N1
The outside velocity N1, pr0pbsed;by Nickel (11), is

composed of a stagnation point flow with adjoining plane plate
flow (Figure 10). It .is

@O .

" U A, Yo
o il =2, :
— L @ L ffT_
x U .
}

Figure 10, Outside velocity,
N1

Figure 11 shows the results for H,r.s~.6| for the calculation
with n = 100, hy/L 0.05, hy/L=0.1, x,/L = 5. The
H-profile up to x/L = 1 is that of the stagnation point flow
and isjtherefore, independent of x and h constant. At the

Il

point x/L = 1, plane plate flow begins, and there U' has
a jump. Thus, the "compatability conditions" between the profile
for x/. = 1 and the boundary‘honditions for «L>1 are not

met, so that the solution H has a singularity at x/L = 1.
This appears distinctly as the jump of the Hj value in Figure 11.

As an accuracy comparison for different parameters mn and
h is not well representable analytically, numerical values
for H.7,.é* 6Glare given in Table 2. The table shows that an
accuracy of two figures for 1 can be attained with relatively
little computing cost, while high computing cost is required
for an accuracy of three digits.

c. Cylinder with potential flow.

. \
The boundary layer was calculated for the potential velocity

of a cylinder with flow transverse to the axis. We have

_?Ii) See reference [6].
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UjU,} = 2 sin (x/R). Here R 1is the radius of the cylinder,
which in this example is chosen as the reference length L., The
Quantity x/R is the angle in radians, measured from the
stagnation point of the cylinder. The initial profile is the
stagnation point profile (similar H-profile for 7| = 1).

| S RN

Figure 12, Flow around
a cylinder

ty

st Y

Figure 11. Outside velocity N1:
U, HO e 8% 61 for n = 100
h /L 0.05; hl/L 0.1; xg /L =

/185’

Figure 13 shows the results for H,7,¢* 0] at n = 100,
h = 0.005. At the separation point, Hy, =0 and == 0,
Goldstein [18], in a theory later improved by Stewartson [19],
showed that in the vicinity of the separation point X, the
shear potential 7| varies as (xa - X)7, Hy 1is proportional
to | and so it varies as X, - x at the separation point.
That is, the <7 curve opens at the separation point with a
vertical tangent in the x-axis, and the Hy curve like a linear
function. The 7 and H, curves in the vicinity of the separ-
ation point are plotted in Figure 14 for different values of n
and h. It should be noted that they are not expressed for each
step of the computation.

75
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\ N
TABLE 2, OUTSIDE VELOCITY N1: VALUES OF .z, 800 (IN
DIMENSIONLESS FORM) FOR DIFFERENT VALUES OF
n, h, AND x/L '

L
! no " 200 ; 1o i 100 100 20 I ] 19
I k, H 0.1 . 0.1 0.03 0.1 G4 0,01 0.1
! iy i Q.1 i Q0L 0,1 0.1 .t 0,00 i 0,1
i =571 : - ! - B - - - i -
iy =0,7398 © 0,7600 | 0,7681 -} 07683
xflL= "7, =05163 ' 06162 0,6177 0,619% ¢ _
Bo05 00 =06486 - 06454 o - 0,636 0,6262
g (O =02011 - 0,2001 0,2823 0,2742 |
E 0,398 ' 0,7609) _ 0,7631 0.7685 |
1T ¢ - L2327 ¢ 12329 1,2351 1,2398 _
i 0,6466 06154 - - 0,6364 0,6262
: 0,2011 10,2001 0,2823 9,2742 !
Poo0,2012 0,200l 0,1993 10,2015 0,2004 | 0,2045
L2 | 90,3362 0,3346 10,5336 0,5365 0,3430 10,5405
‘ 01,0848 1,0018 1,0985 1,0814 1,0473 . 1,0612
: i boo0,4238 0,4297 0,4337 0,4215 0,4000 | 0,4081
, 0,133% , 10,1368 0,1351 0,1541 0,1566 0,1633 | 0,1603
5 0,3923 10,3939 0,30.42 0,3926 0,3938 04041 10,4003
; 14680 | 1,4482 14362 11,4646 1,4369 1,3870 11,4049
; 80,5707 § 0,3603 0,5641 0,368l 0,5300 0,5221 10,3307
) 0,1342 - 0,1335 0,1315 0,1375 0,1413
A 06,2991 0,3005 0,299 ,3027 90,3072
! , 1,9133 | 1,8999 1,9020 1,8659 1,3192
i - 0,539 0,7319 0,7353 0,7093 0,682
i ;' 09,1190 0,1199 0,1194 0,123 0,1275
R S 0,184 | 0,1830 0,1847 0,1873 L1 0,1908
£ P° 3,0937 | 3,0766 | 38,0828 3,0019 2,9204
] i 1,1913 L1817 | 1,l842 1,1372 1,0934
: - 0,1139 : 0,145 1 01143
co9 ! 01157 | 0,1161 | 10,1160
: ; 4,9260 ! 4,902+ | 49066 i
i v 1,8956 | C1,8819 | 1,8836 i

ok

42

Figure 13. Flow around a cylinder: 4,..s¢ for mn = 100, h/L-
h/L = 0.005.
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TABLE 3. FLOW AROUND A CYLINDER: VALUES FOR #.w/l% &*-126- 7]

TG
IN DIMENSIONLESS FORM) WITH DIFFERENT VALUES OF n AND h

i Toreil S R o L 20 Wi
. O (N 10 S 00k S R . 'R A X1 Y 11 TR
Ay 182 i 18024 1.0 i 1,803 i R} : 1,503 187 . 1802 1)
* [ H i ! E ’ ' : ! I !
xR Hy = — Poo,7437 10,7458 ¢ 0,7160 L 0,745 Lo0Tase : 07490 | 0,75F 0,352
'rﬁjlf'a"zn,ssﬁg 0,3369 ' 0,3369 l 4,3569 10,3369 | 0.3564 © 03376 | 0,339 | 0,338
maféw@'=05ws 0,6387 | 0,6583 iOﬁIO }ummi P 06386 ; 06479 ' 0,637 ! 0,62
FOTE =0,2071 ] 60,2964 |mww bo0,2040 02049 § 0,2957 02873 P 0,279 10,27
. | . i
; - 07201 16,7201 07204 10,7202 ;0;m3$ 0,7232 0,729 lo;n
035 , 0,5375 10,3575 10,5573 10,5576 1 05574 § 05560 | 63387 | 0,561 1 0,559
T 0,6813 06805 | 06800 | 0,678% ioﬁmq EO0,6817 10,6693 ;0,638 | 0,661
b 0,3061 0,3054 | 0,3030 | 0,3038 | 0,3039 } 03033 | 6,2939 ' 0,287 {0,288
: - 0,652 1 0,6526 ¢ 0,6529 ! 0,6424 ' 0,6453 I 06335 | 0,661 | 0,651
08 +  0,7350 0,7548 10,7349 10,7330 : 0,7348 ; 0,7306 | 0,7365 ¢ 0,760 {0,736
i 00,7408 0,7400 1 0,7395 | 0,7381 | 0,7384 | 0,734 1 07277 ! 0,716 | 0,721
:0,3303 06,3205 & 03201 | 0,327 ! 90,3280 | 0,3307 | msmz; 0,210 | 0,312
1
! - 0,5833 ! 0,5834 | 0,5837 | 0,5831 | 0,5730 | 05861 | 0,591 { 0,582
1,0 0,7979 0,976 1 0,7977 | 0,7976 : 0,7974 | ¢,7905 | 0,7995 | 0,803 | 0,59
0,8057 0,051 | 0,8046 | 0,803¢ | 0,8033 i 28129 © 07915 1 0,378 1 0,87
0,3360 0,3351 . 0,356 | 0,3332 | 0,3533 i@ﬁﬁ& 03138 | 0,333 [ 0,337
- 05%8! 0,1389 oAma[ 0,1883 | 0,4747 | 0,4913 | 0496 | 0,483
12 1 860 0,7606 | 0,607 1 07609 ; 7602 ; 07493 | 03625 : 0,766 | 0,756
P 0,9031 0,9027 ; 0,9020 [ 0,001 | 09010 | 09168 i 08871 | 0,872 | 0,886
i0,3927 0,3909 | 0,3913 | 0,3897 | 03901 [ 0,3970 | 0,3792 .0 0,368 | 0,374
- 0,2850 | 0,2851 | 10,2853 lo;m& 0,2643 | 0,2866 1 6,200 | 0,271
15 0,5520 0,3510 ; 0,5311 | 055513 | 0,5502 | 06,3308 | 0,5326 ' 0,336 | 0,537
1,16835 1,1689 © 1,1680 | 11654 | 11676 | 1,2071 | L1483 { 1,127 ! L]l63
9,1826 0,4819 | 04812 1 04791 | 0,4799 0,942 | 0,4636 | 0,431 | 0,464
- 0.1982 ' 0,1982 | 0,1984 f 01972 | 01761 | 02993 | 0,202 | 0,161
1,6 0,4396 0,4384 | 0,4383 | 04387 | 04373 | 04137 | 0,4397 | 0,432 1 0,419
L W XY 13252 1 132427 11,8212 0 13234 | o1.3820 | 13020 1,237 | 1,232
i 0,3281 0,3273 ! 0,3265 10,5292 | 05252 | 0,5438 .1 0,5092 ! 06,492 | 0,510
' } 3
g 0,1043 | 01043 | 60,1045 | 60,1033 | 0081 | 0,106 ¢ 0,305 ! 0,084
1,7 0,2089 | 0,2089 . 02092 ! 0,2975 | 06,2684 | 0,2993 | 0,300 | 0,269
i 1,5623 1 13,5611 | 1,33%5 D o1,5624 | 16535 15357 | 1,308 | 1,599
; 0,5854 ‘ 0,5844 | 0,5818 | 0,5831 | 0,6G69 ‘ 90,5650 i 0,516 | 0,369
| - 0,0149 | 0,049 | 00149 I 0,015 1 0,002 | 0,0027 : 0,008
L8 10,1649 0,1045 | 0,3045 | 0,043 | 01030 | 0,0393 | 0,0965 ' 0,077
L 2,032 2,0349 | 2,0336 | 2,0299 [ 2,0372 | 2,3GI1 | 2,014+ | 1871
0,6628 06,6618 | 0,6608 ! 0,6378 | 0,6592 i 06877 | 0,6391 _ 0,623

The separation point x, was usually determined graph-
ically as the zero point of the curve of the printed H,  values.
Later, a bisection process was built into the program. It
begins at the first negative Hy value and iteratively calculates
the zero point of the H curve. In 1960, Terrill [20] first
stated the separation point at xa/R = 1,823, corresponding
to ¢l = 104,45, after the separation point had previously
been accepted as being at ¢~1099 . Terrill calculated
the cylinder boundary layer with high numerical cost according
to a difference-differential equation method. Table 3 shows
Terrill's results and some results for different values of

1



n and h., As the calculations of Terrill and those of the author
were done with U =1 . sin x, the values for =//%, 2,62
are given in Table 3, 1if %Lx-;g1 are the values for U = 2 sin x.
Table 3 shows again that, for example, we can calculate the
shear stress with little cost to two decimals, ‘but that the
computing cost increases rapidly if three or four decimals

accuracy are required. Some velocity profiles are plotted in
Figure 15 for n = 200, h = 0,01.

Figure 14. Flow around a cylinder: . in the vicinity of the
separation point for different values of n and h/L.

d., Tani flow

The Tani flow. EJ&W;;IQ(ﬁiﬁ{mufgggggéﬁts“the potential filow
‘at a"flatﬁplate in ‘a diverging channel. The velocity curve
is plotted in Figure 16 for different values of m. The initial
profile Al is the similar solution for =8 . For values of

28|



m > the velocity is U/U,~1 up to a certain point xZ/L,
within the limits of computing accuracy, so that =0} and

one starts the boundary layer calculation only at the point

Xqg = x with the profile for A=0| , as the H profile

is constant up to there. First, H changes slightly, so that
it can be computed with a coarse step width hO. Beybnd a point

X where H, or H . become larger, we calculate with a

’
finer'$tepwidth hl' For va%ues of m«<l the velocity first
falls rapidly, then more gradually, Here, we begin with a
fine step width h, and beyond X, we calculate with a
coarser step width hl’ In the range where m=} it is

practical to compute with a constant h.

For m =1, the Tani flow was treated with the series
method of Howarth [21], with the differences-differential
equation method of Hartree [22] and specially in the vicinity
of the separtion point by Leigh [23]. With the series method,
Tani calculated the flow for m = 2, 4, 8 [24]. Gortler and
Witting [25] calculated it form =1, 2, 3, 4, 5. As the
series converge poorly in the vicinity of the separation point,
the calculations were done there with different continuation
methods.

The boundary layer was calculated with the differential
method given here for 26 values of m between 0.05 and 100.
For some values of m, control calculations were performed
with different parameters mn and h. In the limits of this
work it is impossible to show the curves of *.6% 8.3} for these
examples, The results of Howarth (12), Hartree (13), and those

of the differential method are given for some values of n and h.

(12) See reférence [21].
(13) See reference [22].



TABLE 4. HOWARTH FLOW Ui, =1-=x/L} :  VALUES FOR 1, 7.4% ©
WITH DIFFERENT VALUES OF = AND h.
Iawanb 1lartree a = 300 o 2490 : 100 i 190
home 3-00%¢ T 2,5 00m¢ S.pp-s 16-1 P2y
Ty 0,12000 0,12033 S Y Doocazeny : 0,12005 } 0,12072
" Hy = 0,0859 | 00862 | 00861 - 00865 |
xIL 1, = 1,712 1,7772 1,7337 ¢ LTi61 ¢ 1716l 01,7989 |
0,025 d* = 0,292 0,2009 | 4,2904  0,7903 ¢ 0,2804 !
O = 0,110 06,1091 i 6088 i 00088 . 0,082
0,0613 ¢ 00615 | 00614 00610 0,0615
0,050 1,011 1,6106 LOI2o 10138 ¢ 1,0033 1,0061 11,0140
0,447 0,4438 10,4430 | 04451 04432 10,4440
0,162 0,1616 ! 01612 | 01612 _ 01602 : 0,1603
0,0371 10,0372 . 00372 0,0375 -
0,075 0,613 L 06131 1 06146 ¢ 06113 1 06171
0,603 © 06019 : 06,6007 ! 0,6009 0.3983
0,209 P020%9 ¢ 4.2073 02074 :  £,2060 E
P00l | 60146 00136 . 0,0150 ! 0,0130
0,100 . 0,313 03154 - 03164 | 03175 03176 90,3213 | 0,3214
0,794 I 07948 0 05925 10,7909 0,910 .« 0,7867 | 0,7870
i 0,254 0,2542 2331 & 0,257 02524 10,2307 0,2509
' C0,0002 T 00001 ! 00002 0,0004 | 0,0004
0,120 0,000 | ©o0,0302 10,0228 0,0316 © 0,0856 | 0,0173
1,110 | i Lois ;31,0110 1,055 © 1,0317 | 11,0333
0,290 ! 82002 1 02896 | 0.2093 0,267¢ © 0,2874
vyl
e )
25 /
3 T - /
i
2;-5

a2

5

L

105

Figure 15.

Flow around a cylinder;

velocity profile for n =

30

200;

Figure 16. OQutside velocity
of the Tani flow for differ-
ent values of m with the
separation points,

h/L = 0.01.



TABLE 5. TANI FLOW: SEPARATION POINT x_/L FOR /U, =1~ (iy| /1388

, m Il xofln n i hy E hy | xafle
0,05 | 32010 100 I 2.10-8 1 23167 | 2,5. 107
0,05 | 3,29.10 00 | 2.1077 5.10-% 1 2.10-°

.01 Liga. tod 0o 1 3.0 L 10 10-

S0l L,20-107 0o & 19 2.107% 10-t

0,2 3,463 1973 100 2.1 ; 5.10% @ 3.10°3

o020 5462.10% 0 100 1 100 1 10 6.107°

03 0,01343 100 1 10 P g 10-3
0,3 00136 W0 ¢ 2.10°% 1 25,307 1p-3
05 & 00382 L1VIV 10-4 2,5 10~ 0,01

;o008 1 00860 100 1 25107 5. 1074 0,02

;11012083 300 . 3. 10 5. ip~ -

ool 012019 206 1 2,3. 107 2,5 10~ -

5 | Poo0,12037 200 & 5.107 5. 10-t -

.Y i 012083 100 ! 000l- _ .0,001 -

-1 0,12072 100 I 0002 0,002 -
1,3 0,1705 100 5 0,001 Loo000L -
1,6 0,2165 100 - 0,001 CD00L -
20 0272 100 0,0023 - 3,0025 -
3 [ D383 100 0,0025 © 0,0023 -
4 0462 109 0,001 0,001 -
4 04629 100 0,0023 ' 0,0023 -

.4 0,4622 50 0,001 0,001 -

3 0,5231 169 0,01 ©0,0023 0,2

6 b 03712 100 0,01 ©o0,0023 0,235

T 0,6091 109 0,01 i 00023 0,28 »
8 0,641 . 100 0,01 - 0,0025 0,32
10 0,6501 100 0,01 P0,0023 0,39
10,7263 100 0,01 Eo0,0025 0,15
16 0,7771 100 0,01 | 0,002 0,16
16 0,165 50 0,0025 | 0,801 | 0,46
16 0,7739 20 0,003 L0,005 -
20 0,8112 100 0,01 © ¢ 0,005 0,33
20 0,8107 30 | 0,003 | 0,000 0,33
20 0,7985 P20 1 0,003 -0 0,003 -
25 90,8408 ST B X Lo0,0023 0,6

B3 0,8401 50 10,0023 | 0,001 0,6
251 08401 50 0 0,0l Eo0,004 0,6
30 0,8615 wDoen P0,0023 0,63
40 0,8903 00§ 001 ©0,001 0,73
10 0,8902 100 | 00023 ¢ 00023 -

B 1Y 0,6683 o200 ;0 0,60235 10,0005 0,83

;30 0,9078 Po2000 0 00025 0 0,0003 0,72

P50 0,907¢ 160 00025 00,0003 0,78
50 09,9070 o | o0l 0,005 ! 0,78
50 0,9067 S L R X 4 . 8,01 S 078
50 04,9065 P20 b 0,002 T 0,0005 0,83
50 0,9065 o200 P 00023 00023 -
50 8,943 | 10 1 00025 = 9,0003 0,83

b 0,93+ Lo 0,00 0001 T 0,83

Do 004936 1 L1000 1 L0003 . 0,0005 0,87
100 | 0,949 .10 0,01 . 0,001 , 0,83
o o 0,919 D0 b oe00s 0 0005 -
Wwo 1 0949 10 i a0l o001 -



For the flows with m# 1, only the separation points X,
will be stated as characteristic quantities. As ﬁor the
cylinder, they were determined either graphically or with the
bisection procedure from the Hy curve. The results with the
check calculations are shown in Table 5. The accuracy of the
separation point could be about 3 figures for the calculation

parameters used. In Figure 17, the separation points from
x,fL T
I—X_J'II:

2

Table 5 are plotted vs. log m in the form log

so as to represent all the points with about the same accuracy.

The separation points are plotted in Figure 16. The
velocity at which the boundary layer separates is plotted
vVSs. lbg m in Figure 18. At large values of m, the boundary
layer thickness grows with almost constant outside velocity, and
the boundary layer flow loses energy. Now, if we insert a some-
what stronger drop in velocity (pressure increase), the boundary’
layer separates immediately, ! and at m = 100, almost with
full velocity v, , Figure 18. With very low values of m
there is a sudden drop in velocity at the point x = 0; but
here the boundary layer thickness is zero and the boundary layer
is compatible with a considerably higher velocity drop than at

m > . At m = 0.05 it is up to some 35% of ¥, . Whether
such flow is realizable, and(whgther the boundary layer
14

assumptions still apply here will not be investigated.

The results given here are properties of the mathematical

models (1), (2), the solution of which by the differential methbd
“can be considered reliable even for such extreme cases as m = 100

or m = 0.05.

.(14) See references [1] and [2].
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11. SUMMARY

An implicit differential method is given for the laminar
incompressible steady boundary layer at a solid impermeable
wall. It uses a differential equation of the Crocco type as the
starting equation. By detai{ed stability investigatioﬁS'whiqh
can only be done numerically, it can be shown that perturbations
are definitely removed after a few steps of calculation. The
method is tested practically with a large number of examples.
The computing t fme requires the use of electronic computers,
but the method is well suited for programming. For example, an
accuracy of two decimals for the shear stress is attained with
little cost, while the cost for an accuracy of three decimals
must be considered as relatively high.
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